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Abstract
We study the ground state properties of the t–J model on two and three leg
ladders. The phase diagram of the anisotropic couplings along the rungs and
legs is investigated to find the opening of a charge transfer gap which appears as a
charge density plateau. In a perturbative approach we start from isolated rungs at
zero leg couplings. Then the stability of the charge density plateau is examined
by first order perturbation theory in terms of an effective Hamiltonian using the
numerical Lanczos method on finite size ladders. The results of this approach
are compared with the exact diagonalization of finite systems. We have found
that an improvement of our results depends on the initial clusters for zeroth order
perturbation which cannot be recovered by higher order perturbation in rung
clusters. For the two leg ladder case the application of 4-site (2 × 2) plaquettes
helped us to overcome earlier flaws when the charge density is greater than one-
half. We have also addressed the generalization of our method to trace phase
separation in this model, where a linear dependence of ground state energy
versus charge density gives evidence of a phase separated state.

1. Introduction

It is now reasonably well established that the doped antiferromagnets found in cuprate
compounds have a superconducting ground state. Moreover, synthesizing quasi-one-
dimensional ladder materials with mobile charge carriers has raised an increased interest
in the theoretical understanding of their rich phase diagram [1, 2]. The t–J model has
been considered as the simplest model including the low energy physics of doped ladder
systems [3, 4]. Among many interesting features of doped antiferromagnets [5] is the metal–
insulator transition investigated in [6]. This transition is accompanied by the opening of a gap,
which appears as a plateau in the charge density ρ(µ) as a function of the chemical potential
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(µ). The charge density plateaux in ρ(µ) look similar to the plateaux in the magnetization
curve M(h) found in spin systems [7]. A charge density plateau in ρ(µ) is signalled by
discontinuous changes in the slope of the ground state energy per site as a function of ρ. It
emerges immediately in the local rung approximation [8] or bond-operator theory [9]. The
aim of this paper is to go beyond the local rung approximation by means of a systematic
perturbation theory in leg couplings. Moreover, we are going to explain the effect of the initial
cluster on perturbation theory. This on the other hand shows the formation of clusters in the
ground state of t–J ladders. The extension of the cluster approach to a product ansatz of the
ground state shows the evidence of phase separated states. This can be generalized to predict
the boundary of phase separation [10].

2. The model

We have considered t–J models with ladder geometry (see figures 1 and 2 of [11]). The
Hamiltonian for such models is the following:

H =
∑

legs

∑

i

hi,i+1(t
′, α′) +

∑

rungs

∑

j

h j, j+1(t, α),

hi,i+1(t, α) = P

{
t

[∑

σ

(c†
i,σ ci+1,σ + h.c.) + α(Si · Si+1 − 1

4 ni ni+1)

]}
P,

(1)

where ci,σ is the fermion annihilation operator with spin σ , Si is the spin 1/2 operator and P
is the projection to the singly occupied subspaces. In our notation the exchange coupling J is
defined to be J = tα. The Hamiltonian between two sites (bond) of the system is hi, j . We
have considered open boundary conditions in both leg and rung directions.

3. Cluster approach

3.1. Rung clusters

The cluster approach we have considered is a perturbation theory in terms of the cluster basis.
At first glance the trivial cluster seems to be given by the rungs, i.e. a system of two sites in
two leg ladders and three sites in three leg ladders. At the zeroth order perturbation theory
(t ′ = 0) the ground state of the ladder (|E0〉) at any charge density ρ = Q/N (where Q is the
total charge and N is the total number of sites) is a direct product of the rung ground states.

|E0〉 =
∏

x

|q(x)〉 = |q(1), q(2), . . . , q(Nr)〉 (2)

where |q(x)〉 refers to the ground state of rung x with charge q and Nr is the number of rungs.
It is imposed that Q = ∑

x q(x). A detailed calculation in [11] shows a discontinuity in
the chemical potential (µ = dE0

dQ ) at a specific charge density at zeroth order approximation.
This is the first indication of a charge density plateau at ρ = 1/2 for the two leg ladder and
ρ = 1/3, 2/3 for the three leg ladder.

We have then studied the stability of a charge density plateau in the presence of leg
couplings in terms of first order perturbation [11]. In this approach the rung states with odd
charges are considered as quasi-electrons and those with even charges as quasi-holes. The first
order correction is obtained as an effective Hamiltonian on a chain which is a modified t–J
model with renormalized couplings plus an extra diagonal term. Numerical computation using
the Lanczos method gives us the area in the parameter space where the charge density plateau
survives. This is actually an opening of an energy gap in the spectrum of charge degrees of
freedom. The phase diagram for two leg ladder is plotted in figure 5 of [11]. We found that the
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Figure 1. Decomposition of a two leg ladder into 4-site plaquettes.

formation of a charge density plateau is favoured for small values of α and large values of α′.
The parameter space of the three leg ladder consists of four different phases where plateaux at
ρ = 1/3, 2/3 can coexist, exclude each other or disappear completely. It is shown in figure 7
of [11].

3.2. Plaquettes

From now on we will restrict ourselves to two leg ladders to show the main features of our
perturbative approach. By comparing the results of the rung cluster approach with an exact
diagonalization on finite lattice sizes we arrive at the following arguments.

• Fairly good results for ρ < 1/2.
• Discrepancies for ρ > 1/2.

We have convinced ourselves that it is not a perturbative artefact to be improved by higher
orders; instead the initial clusters for zeroth order bases have to be improved. In this respect we
have considered the 4-site plaquettes to decompose our ladder at the zeroth order perturbation
as in figure 1. In this case the bases of zero order perturbation also contain the information
of leg couplings. To be more specific and able to obtain clean results, we will consider two
different cases of the coupling constants, namely:

• (a) small α, large α′,
• (b) large α, small α′.

To examine the improvement of results at the first stage, we have considered two special values
of charge density, ρ = 1/2, 1. We have found that the ground state energy per site (E0/N) of
an N = 16 ladder can be very well reproduced by the ground state energy density (ε(p)

0 ) of a
4-site plaquette with a correction factor ( f ) close to unity.

E0

N
(ρ, t ′, α, α′) = ε

(p)
0 (ρ, t ′, α, α′) f (ρ, t ′, α, α′); ρ = 1/2, 1. (3)

We have plotted the factor f in figure 2 forρ = 1/2 and 0 � t ′ � 1. The maximum deviation in
the t ′-regime (i.e. at t ′ = 1) turns out to be 20% for case (a) and is less than ∼6% for case (b).
A similar conclusion is obtained for the results of ρ = 1 [12]. The interaction between
plaquettes is responsible for the deviation from unity. We have chosen special parameters
for the horizontal axis of figure 2 to show the scaling behaviour for different values of α and
α′. To go beyond zero order approximation the product ansatz equation (2) with plaquettes is
considered for the ground state and the following constraints are imposed.

Q =
∑

j

Q j , N = 4 × Np. (4)

Here Q j is the charge of j th plaquette and Np is the number of plaquettes. By comparing the
ground state energy of plaquettes at different charge sectors [12] we found that only plaquettes
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Figure 2. Correction factor f (1/2, t ′, α, α′) of equation (3) for a 2 × 8 t–J ladder with
parameters (a), (b) and ρ = 1/2.

with charges Q = 0, 2, 4 contribute to the ground state in both (a) and (b) regimes. The reason
is simply formulated in the following equations.

ε
(p)
0 (Q = 0) + ε(p)

0 (Q = 2) < 2ε(p)
0 (Q = 1), (5)

ε
(p)
0 (Q = 2) + ε(p)

0 (Q = 4) < 2ε(p)
0 (Q = 3). (6)

Equation (5) means that the creation of two Q = 1 plaquettes from a Q = 0 and a Q = 2 one
is not favoured energetically. A similar argument is drawn for equation (6). In the next step we
have calculated the interaction between different plaquettes by using the product ansatz [12].
Let us define W (Qi , Q j ) as the interaction energy between two neighbouring plaquettes of
charge Qi and Q j . Since only Q = 0, 2, 4 plaquettes contribute to the ground state ansatz
then W (Qi , Q j ) will be diagonal, because a charge exchange of more than one (electron) is
forbidden in first order perturbation. Finally we arrive at

W (Qi , Q j ) = −t ′α′ Qi Q j

32
. (7)

Summing up the zeroth and first order perturbation theory we arrive at the following results for
the two leg ladder ground state energies for ρ � 1/2 additionally shown in figure 3. There is a
big improvement for ρ > 1/2 of case (a) compared to the results of rung clusters (see figure 4
of [11]). Moreover, we can now explain the reason why at a specific t ′ value for ρ > 1/2 the
chemical potential is zero. In first order perturbation theory the ground state energy per site is
E0(ρ)

N
= 1

4
[ε(p)

0 (Q = 2) + W (2, 2)− 2ε(p)
0 (Q = 4)− 2W (4, 4)]

+
ρ

2
[ε(p)

0 (Q = 4) + W (4, 4)− ε
(p)
0 (Q = 2)− W (2, 2)]. (8)

The chemical potential goes to zero when the ground state energy does not depend on ρ. In
our approach this happens when the second term in equation (8) is about to vanish. This gives
a point (t ′

0) where the energy of all charge sectors cross each other. The plaquette approach
gives t ′

0 = 0.329 and the corresponding energy density E0/N = −0.650 99t , compared with
the numerical Lanczos results which are t ′

0 = 0.323 and E0/N = −0.663t . This shows a very
good agreement. Thus the plaquette approach improves the results very much—in particular
for ρ > 1/2. Moreover, it still shows a discontinuity in the slope of energy density versus ρ,
indicating the presence of a charge density plateau at ρ = 1/2.
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Figure 3. Ground state energy density versus charge density (ρ) for case (a) where α = 0.5, α′ =
2.7. Additionally shown are first order perturbation results for ρ � 1/2.

4. Discussion and extensions

A generalization of our cluster approach to clusters with half of the lattice size provides a way
to trace the interesting phenomenon of phase separation. Suppose that in a phase separated
ground state the system is divided into two clusters. The first cluster with N1(ρ1) sites has
charge density ρ1 and the other cluster covers the remaining sites, namely N2(ρ2) with charge
densityρ2. The Hamiltonian of the whole ladder can be written as H = H1(N1)+H2(N2)+H1,2,
where H1(N1) (H2(N2)) is the Hamiltonian of an N1 (N2)-site cluster respectively and H1,2

represents the interaction between the two clusters. We then use the following product ansatz
for the ground state:

|ψ0(N, ρ)〉 = |ψ0(N1, ρ1)〉|ψ0(N2, ρ2)〉, (9)

where |ψ0(Ni , ρi )〉 is the ground state of the Hamiltonian of the first (i = 1) and second
(i = 2) cluster with the corresponding energy E p

0 (ρi ), imposing that N = N1 + N2 and
ρ = (N1ρ1 + N2ρ2)/N . Since the value of 〈H1,2〉/N is zero in the thermodynamic limit, the
ground state energy per site (〈ψ0(N, ρ)|H |ψ0(N, ρ)〉/N) is a linear function of charge density
for ρ1 < ρ < ρ2 [12]:

E0(ρ)

N
= 1

ρ2 − ρ1
[E p

0 (ρ1)(ρ2 − ρ) + E p
0 (ρ2)(ρ − ρ1)]. (10)

Thus we argue that a linear dependence of the ground state energy versus charge density is a
signature of phase separation.

In summary, the plaquette approach is able to reproduce very well the ground state
properties of the two leg ladder. It asserts that a charge density plateau appears at ρ = 1/2.
Moreover, a phase separation appears for 1/2 < ρ < 1. The generalization of this approach
to the two dimensional t–J model for tracing the phenomenon of phase separation is under
consideration. The latter topic has received much interest since the early experimental [13]
and theoretical [14] studies of the phenomenon.
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